EFFECT OF CONVECTION ON THE

MOTION OF SPHERICAL BUBBLES

P. S. Chernyakov

An expression is derived for the drag coefficient of a spherical bubble, taking account of free, forced, and thermocapillary convection.

We study the effect of free, forced, and thermocapillary convection on the motion of a spherical bubble in a region where the temperature varies linearly with a coordinate. The motion of a spherical bubble, taking account of forced and thermocapillary convection, was treated in [1, 2]. The present article is a refinement and generalization of the results in [3].

Let us consider a spherical bubble of radius R, rising with a velocity U in an infinite incompressible viscous liquid in which a constant temperature gradient dA/dZ is maintained to infinity (Fig. 1). We assume that the Reynolds number $Re_0 \gg 1$ and $Re_1 \gg 1$, and that the conditions in [3] are satisfied.

We seek the velocity distribution in the liquid and vapor phases in the form [3]

$$\vec{u}_0 = \vec{u}_{0V} + \vec{V}_0, \quad \vec{u}_1 = \vec{u}_{1V} + \vec{V}_1,$$
 (1)

where

$$u_{0,\theta,\mathbf{y}} = 1.5U \left(1 - y/R\right) \sin \theta; \quad u_{0,r,\mathbf{y}} = 1.5Uy/R \cos \theta;$$

$$v_{0,\theta} = UF_0/\sin \theta; \quad v_{1,\theta} = UF_1/\sin \theta; \quad u_{1,\theta,\mathbf{y}} = 1.5U \left(1 + 4y/R\right) \sin \theta;$$

$$u_{1,r,\mathbf{y}} = -3Uy/R \cos \theta.$$

The functions F_0 , F_1 , u_0 , r, and $u_{1,r}$ satisfy the following system of equations [3]:

$$\frac{\partial F_0}{\partial \psi} = \frac{1}{\text{Re}_0} \frac{\partial^2 F_0}{\partial x^2} + \frac{\tilde{\beta}_0 \Delta T}{\sin^2 \theta} ,$$

$$\frac{\partial F_1}{\partial \psi} = \frac{1}{\text{Re}_0} \frac{\partial^2 F_1}{\partial x^2} + \frac{\tilde{\beta}_1 \Delta T_1}{\sin^2 \theta} ,$$
(2)

$$\frac{\partial T_0}{\partial \psi} = \frac{1}{Pe_0} \frac{\partial^2 T_0}{\partial x^2}, \quad \frac{\partial T_1}{\partial \psi} = \frac{1}{Pe_1} \frac{\partial^2 T_1}{\partial x^2}, \quad (3)$$

$$\frac{\partial F_0}{\partial \theta} + \sin \theta \ \frac{\partial u_{0r}}{\partial z} = 0, \quad \frac{\partial F_1}{\partial \theta} + \sin \theta \frac{\partial u_{1r}}{\partial z} = 0 \tag{4}$$

and the boundary conditions

TABLE 1. Dependence of Re_{\circ} on Gr_{\circ} and Fr for Ma = 0 and Ma = 100

		M100		
Ma=0		Ma=100		
Fr	Re,	Gro	Fr	Re,
	00		2026	80
2090	100	l ă l	2300	94
2002 5191	200	103	2300	86
7568	300	103	2500	98
10412	400	103	3000	118
		103	5000	180
	1	104	3000	80
	a .	104	5000	160

Physicotechnical Institute of Low Temperatures, Academy of Sciences of the Ukrainian SSR, Kharkov. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 40, No. 1, pp. 52-58, January, 1981. Original article submitted October 8, 1979.

UDC 536.423.1

Fig. 1. Dependence of C_D on Re_o (curves 1, 2, 3) and C_D on Re_o and Gr_o (4, 5, 6); 4) $Gr_o = 0$; 5) 10^3 ; 6) 10^4 ; a, b) data from [8]; c) [9].

Fig. 2. Dependence of C_D on Re_o and Gr_o for Ma = 100; 1) $Gr_o = 0$; 2) 10^4 ; 3) 10^5 .

$$F_{0|x=0} = F_{1|x=0}, \quad F_{0}(0, x) = 0, \quad F_{1}(0, x) = 0, \quad \frac{\partial F_{0}}{\partial x}\Big|_{x=\infty} = 0,$$

$$\frac{\partial F_{1}}{\partial x}\Big|_{x=-\infty} = 0, \quad \mu_{0} \frac{\partial F_{0}}{\partial x} - \mu_{1} \frac{\partial F_{1}}{\partial x}\Big|_{x=0} = 3(\mu_{0} + 4\mu_{4}) + R \frac{d\sigma}{dT} \frac{dA}{dz} \Big/ U - \frac{d\sigma}{dT} \frac{1}{\sin \theta} \frac{\partial T'}{\partial \theta} \Big/ U \Big|_{x=0},$$

$$\frac{\partial T_{0}}{\partial x}\Big|_{x=\infty} = \frac{dA}{dz} \cos \theta, \quad \frac{\partial T_{1}}{\partial x}\Big|_{x=\infty} = 0, \quad T_{0|x=0} = T_{1|x=0}, \quad \lambda_{0} \frac{\partial T_{0}}{\partial x}\Big|_{x=0} =$$

$$= \lambda_{1} \frac{\partial T_{1}}{\partial x}, \quad T_{0}(0, x) = 0, \quad T_{1}(0, x) = 0, \quad (5)$$

where z = y/R; $x = z \sin^2 \theta$; $\psi = \frac{4}{3} \left(\frac{2}{3} - \cos \theta + \frac{\cos^3 \theta}{3} \right)$; $\vec{\beta}_0 = 2Rg\beta_0/U^2$; $\vec{\beta}_1 = 2Rg\beta_1/U^2$; $T' = T_0 - \frac{dA}{dz}$

 $r\cos\theta$. Solving problem (3)-(5), we obtain

$$T_{0} = -\frac{2R}{\sqrt{Pe_{0}}} \frac{dA}{dz} \left(\int_{0}^{\Psi} \frac{d}{d\lambda} \left(\cos \theta \right) \operatorname{erf} \left(\frac{x}{2} \sqrt{\frac{Pe_{0}}{\Psi - \lambda}} \right) d\lambda + x \int_{0}^{\Psi} \frac{d}{d\lambda} \left(\frac{\cos \theta}{\sin^{2} \theta} \right) \operatorname{erf} \left(\frac{x}{2} \sqrt{\frac{Pe_{0}}{\Psi - \lambda}} \right) d\lambda + \frac{dA}{dz} (R + y) \cos \theta + \frac{1}{\pi} \left(\frac{\lambda_{0}}{\lambda_{1}} \sqrt{\frac{a_{1}}{a_{0}}} - 1 \right) \left[\int_{0}^{\Psi} \frac{\exp \left(-\frac{x^{2} Pe_{0}}{\Psi - \lambda} \right) d\lambda - \frac{\lambda_{0}}{d\lambda} \int_{0}^{\lambda} \frac{\varphi_{2}(\tau)}{\sqrt{\lambda - \tau}} d\tau d\lambda - \frac{2 - \frac{\lambda_{0}}{\lambda_{1}} \sqrt{\frac{a_{1}}{a_{0}}} - 1}{\frac{1}{\lambda_{1}} \sqrt{\frac{a_{1}}{a_{0}}} - \frac{1}{\lambda_{0}} \int_{0}^{\Psi} \frac{\exp \left(-\frac{x^{2} Pe_{0}}{4(\Psi - \lambda)} \right) }{\sqrt{\Psi - \lambda}} \varphi_{3}(\lambda) d\lambda \right],$$

$$T_{1} = \frac{1}{1 - \frac{\lambda_{1}}{\lambda_{0}} \sqrt{\frac{a_{0}}{a_{1}}}} \left[\frac{1}{\pi} \int_{0}^{\Psi} \frac{\exp \left(-\frac{x^{2} Pe_{0}}{4(\Psi - \lambda)} \right) }{\sqrt{\Psi - \lambda}} \frac{d}{d\lambda} \times \right]$$

$$\times \int_{0}^{\lambda} \frac{\varphi_{2}(s) \, ds d\lambda}{V \, \lambda - s} - \frac{1}{V \pi \, \mathrm{Pe}_{0}} \int_{0}^{\psi} \exp\left(-\frac{x^{2} \, \mathrm{Pe}_{1}}{4 \, (\psi - \tau)}\right) \frac{\varphi_{3}(\tau) \, d\tau}{V \, \psi - \tau}\right],\tag{6}$$

where

$$\varphi_{2} = \frac{dA}{dz} R \cos \theta; \quad \varphi_{3} = \frac{dA}{dz} \frac{\cos \theta}{\sin \theta} + \frac{dA}{dz} \frac{\sqrt{Pe_{0}}}{2} \int_{0}^{\psi} \int_{0}^{\infty} \frac{d}{d\lambda} \left(\left(R + \frac{y}{\sin^{2}\theta} \right) \cos \theta \right) \frac{\exp \left(-\frac{y^{2} Pe_{0}}{4 (\psi - \lambda)} \right) y}{(\psi - \lambda)^{3/2}} dy d\lambda.$$

Solving the boundary-value problem (2)-(5) and using (6) and [4], we obtain $d\sigma dA/d$

$$F_{0} = -6 \frac{\mu_{0} + 4\mu_{1} + R \frac{d\sigma}{dT} \frac{dA}{dz} / 3U}{\mu_{0} \sqrt{\text{Re}_{0}} + \mu_{1} \sqrt{\text{Re}_{1}}} \psi^{1/2} \operatorname{ierfc} \left(\frac{x}{2} \frac{\sqrt{\text{Re}_{0}}}{\sqrt{\psi}}\right)$$

$$+ \chi_{0} + \frac{1}{\mu_{0} \sqrt{\pi \text{Re}_{0}}} \int_{0}^{\psi} \frac{q_{1} + \chi\mu_{0}}{\sqrt{\psi} - \tau} \exp \left(-\frac{x^{2} \text{Pe}_{0}}{4(\psi - \tau)}\right) d\tau,$$

$$F_{1} = -6 \frac{\mu_{0} + 4\mu_{1} + R \frac{d\sigma}{dT} \frac{dA}{dz} / 3U}{\mu_{0} \sqrt{\text{Re}_{0}} + \mu_{1} \sqrt{\text{Re}_{1}}} \psi^{1/2} \operatorname{ierfc} \left(\frac{x \sqrt{\text{Re}_{1}}}{2 \sqrt{\psi}}\right)$$

$$+ \chi_{1} + \frac{1}{\mu_{1} \sqrt{\pi \text{Re}_{1}}} \int_{0}^{\psi} \frac{q_{1}}{\sqrt{\psi} - \tau} \exp \left(-\frac{x^{2} \text{Pe}_{1}}{4(\psi - \tau)}\right) d\tau,$$
(7)

where

$$\begin{split} \chi_{0} &= \frac{\mathrm{Gr}_{0}}{16\sqrt{\pi} \operatorname{Re}_{0}^{3/2}} \int_{0}^{\psi} \int_{0}^{\infty} \frac{\Delta T' dy d\lambda}{\sin^{2} \theta \sqrt{\psi - \lambda}} \left[\exp\left(-\frac{(x-y)^{2} \operatorname{Re}_{0}}{4(\psi - \lambda)}\right) - \exp\left(-\frac{(x+y)^{2} \operatorname{Re}_{0}}{4(\psi - \lambda)}\right) \right]; \\ \chi_{1} &= \frac{\mathrm{Gr}_{1}}{16\sqrt{\pi} \operatorname{Re}_{1}^{3/2}} \int_{0}^{\psi} \int_{0}^{\infty} \frac{\Delta T'_{1} dy d\lambda}{\sin^{2} \theta \sqrt{\psi - \lambda}} \left[\exp\left(-\frac{(x-y)^{2} \operatorname{Re}_{1}}{4(\psi - \lambda)}\right) - \exp\left(-\frac{(x+y)^{2} \operatorname{Re}_{1}}{4(\psi - \lambda)}\right) \right]; \\ \chi &= \left(\mu_{1} \frac{\partial \chi_{1}}{\partial x} - \mu_{0} \frac{\partial \chi_{0}}{\partial x} \right) \Big|_{x=0} - \frac{4\sin^{3} \theta}{3\pi U} \left(\frac{1}{\left(\frac{\lambda_{0}}{\lambda_{1}} \sqrt{\frac{a_{1}}{a_{0}}} - 1\right)} \times \left[\frac{d}{d\psi} \int_{0}^{\psi} \frac{1}{\sqrt{\psi - \lambda}} \frac{d}{d\lambda} \int_{0}^{\lambda} \frac{\varphi_{2}(\tau) d\tau}{\sqrt{\lambda - \tau}} d\lambda - \frac{2 - \frac{\lambda_{0}}{\lambda_{1}} \sqrt{\frac{a_{1}}{a_{0}}}}{\frac{1}{\lambda_{0}} - \frac{1}{\lambda_{0}}} \frac{d}{d\psi} \int_{0}^{\psi} \frac{\varphi_{3}(\lambda) d\lambda}{\sqrt{\psi - \lambda}} \right]; q_{1} = \frac{\chi}{\sqrt{\pi \operatorname{Re}_{0}}} \left(\frac{1}{\frac{1}{\mu_{1}\sqrt{\pi \operatorname{Re}_{1}}}} - \frac{1}{\mu_{0}\sqrt{\pi \operatorname{Re}_{0}}} \right). \end{split}$$
We calculate the resisting force D, using [5]:

$$D = 2\pi R^2 \int_{0}^{\pi} \left(\tau_{r\theta} \sin \theta - \tau_{rr} \cos \theta \right) |_{r=R} \sin \theta d\theta$$

where

$$\tau_{rr} = -\rho_0 + 2\mu_0 \ \frac{\partial u_{0,r}}{\partial r}; \ \tau_{r\theta} = \mu_0 \left(\frac{1}{r}, \frac{\partial u_{0,r}}{\partial \theta} - \frac{u_{0,\theta}}{r}\right).$$

Substituting (1) and (7) into (8) and neglecting quantities of the order $1/\text{Re}_0$, we obtain

$$D = \frac{1.2075\pi R\mu_{0}U \operatorname{Gr}_{0} \left(0.254 - \frac{\mu_{1}}{3\mu_{0}} \sqrt{\frac{\nu_{0}}{\nu_{1}}} \right)}{\operatorname{Re}_{0}^{3/2} \left(1 - \frac{\mu_{1}}{\mu_{0}} \sqrt{\frac{\nu_{0}}{\nu_{1}}} \right)} \left(1 + O\left(\frac{1}{\sqrt{\operatorname{Re}_{0}}} \right) \right) + \frac{8\pi R\mu_{0}U}{\left(1 + \left(\frac{\mu_{1}\rho_{1}}{\mu_{0}\rho_{0}} \right)^{1/2} \right)} \left(1 + \frac{4\mu_{1}}{\mu_{0}} + \frac{1}{3} \frac{d\sigma}{dT} \frac{dA}{dz} / \mu_{0}U \right) \left(1 + \frac{0.815}{\sqrt{\operatorname{Re}_{0}}} + O\left(\frac{1}{\sqrt{\operatorname{Re}_{0}}} \right) \right).$$
(9)

Using (9) and neglecting $(\mu_1/\mu_0)\sqrt{\nu_0/\nu_1}$, which is very much less than unity far from the critical point, we calculate the drag coefficient C_D:

$$C_{D} = \frac{2D}{\rho_{0}\pi R^{2}U^{2}} = 1.2256 \frac{\mathrm{Gr}_{0}}{\mathrm{Re}_{0}^{5/2}} + \frac{32}{\mathrm{Re}_{0}} \left(1 + \frac{1}{3} \frac{\mathrm{Ma}}{\mathrm{Re}_{0}\mathrm{Pr}}\right) \left(1 + \frac{0.815}{\sqrt{\mathrm{Re}_{0}}}\right).$$
(10)

We consider special cases for (10):

1. dA/dz = 0. Then

$$C_{D} = \frac{32}{\operatorname{Re}_{0}} \left(1 + \frac{0.815}{\sqrt{\operatorname{Re}_{0}}} \right)$$
(11)

The following expression was derived in [6] for the drag coefficient of a gas bubble in a liquid for small and moderate Reynolds numbers $(0 < \text{Re}_0 \leq 5)$:

$$C_D = \frac{16}{\text{Re}_0} (1 + 0.125 \text{Re}_0).$$
(12)

Since, according to [5], the tangential stresses vanish on the surface of a bubble, there is nonseparating flow around a bubble. Because of nonseparating flow around a spherical bubble the drag coefficient of the bubble is a monotonically decreasing function of the Reynolds number.

By using a dissipation function and asymptotic boundary layer methods the following expression was derived in [7] for the drag coefficient of a spherical gas bubble at large Reynolds numbers:

$$C_D = \frac{48}{\operatorname{Re}_0} \left(1 - \frac{2.2}{\sqrt{\operatorname{Re}_0}} \right). \tag{13}$$

By calculating the dependence of CD and Re_o from Eq. (12) in the range $0 < \text{Re}_0 \leq 5$, and by Eq. (13) for $70 \leq \text{Re}_0 \leq 350$, and interpolating graphically for intermediate Reynolds numbers, we obtain a unique dependence of CD on Re_o for $0 < \text{Re}_0 \leq 350$ (Fig. 1, curve 1). Curve 2 shows the dependence of CD on Re_o for $70 \leq \text{Re} \leq 350$ from Eq. (11). The maximum difference of the results calculated by Eqs. (11) and (13) is 20%. For comparison Fig. 1 also shows the experimental dependence of CD on Re_o [8, 9]. Curve 1 was approximated to within 1% by the method of least squares:

$$\ln C_D = 2.77014 - 2.45195\log_{10} \operatorname{Re}_0 + 0.0820358 \, (\log_{10} \operatorname{Re}_0)^2 +$$

$$+0.338871 (\log_{10} \text{Re}_0)^3 + 0.109637 (\log_{10} \text{Re}_0)^4 - 0.155004 (\log_{10} \text{Re}_0)^5 + 0.0301038 (\log_{10} \text{Re}_0)^6.$$
(14)

Curve 3 shows C_D as a function of Re_0 calculated by Eq. (14). The calculated values of the drag coefficients (1, 2, and 3) are in good agreement with the experimental data.

2. Case of Weightlessness (g=0). We obtain from (10)

$$C_D = \frac{32}{\operatorname{Re}_0} \left(1 + \frac{\operatorname{Ma}}{3\operatorname{Re}_0\operatorname{Pr}} \right) \left(1 + \frac{0.815}{\sqrt{\operatorname{Re}_0}} \right).$$
(15)

Curve 4 shows the calculated dependence of C_D on Re_0 for Ma = 0 (neglecting the Marangoni effect) for $80 < Re_0 \leq 350$ and $0 < Gr_0 \leq 10^5$.

Figure 2 shows the dependence of C_D on Re_ and Gr_ for Ma = 100 (80 $\leq Re_0 \leq 350$), (0 $\leq Gr_0 \leq 10^5$).

It follows from Figs. 1 (4) and 2 that C_D is a monotonically increasing function of Ma and Gr_o , and for $Gr_o \ge 10^3$ it is necessary to take account of the effect of free convection on the drag coefficient C_D .

Equating the resisting force to the sum of the Archimedes and thermocapillary forces, we obtain the following equation for the velocity of rise of a bubble:

$$C_D = \frac{4}{3} \frac{\mathrm{Fr}}{\mathrm{Re}_0^2} + 4\pi \frac{\mathrm{Ma}}{\mathrm{Pr}\mathrm{Re}_0^2}$$

Table 1 shows the dependence of Re_{\circ} on Fr and Gr_{\circ} for Ma = 0 and 100.

NOTATION

R, radius of bubble; r, θ , spherical coordinates; v_r , v_θ , radial and longitudinal velocity components; z, vertical coordinate; U, velocity of rise of bubble; p_0 , p_1 , pressure; β_0 , β_1 , coefficient of volume expansion; ρ_0 , ρ_1 , density; μ_0 , μ_1 , dynamic viscosity; α_0 , α_1 , thermal diffusivity of liquid and vapor, respectively; σ , surface tension; $\tau_r\theta$, τ_{rr} , tangential and normal stresses; D, resisting force; E(x, r), F(x, r), elliptic integrals of the first and second kinds; z = y/R; $x = z \sin^2\theta$; $v_0 = v_0$, θ/U ; $v_1 = v_1\theta/U$; $F_1 = v_1 \sin\theta$; $v_1 = \mu_1/\rho_1$; $C_D = 2D/(\pi\rho_0 U^2 R^2)$; $Re_1 = 2RU/v_1$; $Pr_1 = v_1/\alpha_1$; $Pe_1 = Re_1Pr_1$; $Gr_1 = g\beta_1 \times (dA/dz)R^4/v_1^2$; $Fr = v_1/\alpha_1$; $Pe_1 = Re_1Pr_1$; $Pe_1 = Re_1Pr_2$; Pe_1Pr_2 ; Pe_2

$$8gR^{3}/v_{0}^{2}; Ma = 2 \frac{d\sigma}{dT} \frac{dA}{dz} R/v_{0}a_{0}; \Phi(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} \exp(-s^{2}) ds; \Phi^{*} = 1 - \Phi; i\Phi^{*}(x) = \int_{x}^{\infty} \Phi^{*}(s) ds. \text{ Subscript i = 0.1.}$$

LITERATURE CITED

- 1. A. S. Povitskii and L. Ya. Lyubin, Fundamentals of Dynamics and Heat and Mass Transfer of Liquids and Gases Under Zero Gravity [in Russian], Mashinostroenie, Moscow (1972).
- N. Young, J. S. Goldstein, and M. J. Block, "Motion of bubbles in a vertical temperature gradient," J. Fluid Mech., <u>6</u>, 350-356 (1959).
- 3. P. S. Chernyakov and Yu. A. Kirichenko, "Motion of bubbles in a liquid under low gravity," in: Cryogenic and Vacuum Technology [in Russian], No. 1, FTINT Akad. Nauk Ukr. SSR (1969), pp. 71-79.
- 4. A. V. Lykov, The Theory of Heat Conduction [in Russian], Vysshaya Shkola, Moscow (1967).
- 5. L. G. Loitsyanskii, Mechanics of Liquids and Gases [in Russian], Nauka, Moscow (1973).
- 6. A. M. Golovin and M. F. Ivanov, "Motion of bubbles in a viscous liquid," Zh. Prikl. Mekh. Tekh. Fiz., No. 1, 107-111 (1971).
- D. W. Moore, "The boundary layer on a spherical gas bubble," J. Fluid Mech., <u>16</u>, 161-176 (1963).
- 8. J. F. Harper, "The motion of bubbles and drops through liquids," Adv. Appl. Mech., <u>12</u>, Academic Press, London (1972), pp. 59-129.
- 9. Yu. A. Kirichenko, M. L. Dolgoi, and A. I. Charkin, "Investigation of the dynamics of vapor bubbles under low gravity," Preprint FTINT, Akad. Nauk Ukr. SSR, Kharkov (1973).

FREE CONVECTION IN A GRAINY LAYER ALONG

A VERTICAL WALL

D. A. Narinskii

UDC 536.244:541.182.8

A solution based on the integral thermal balance equation is offered.

We propose an approximate analytical solution of the problem of free convection produced by the temperature difference between a wall and a liquid filling an immobile grainy layer of solid elements. The solution obtained is also applicable to the process of mass exchange.

We make the following assumptions in considering the problem.

1. Liquid convection in the layer occurs in the region of dominance of viscosity forces.

2. The temperature difference in the layer is not large, so that the physical parameters of the liquid (aside from density) are temperature independent; the density is a linear function of temperature.

3. The temperatures of grains and liquid are identical, i.e., the layer is considered as a quasihomogeneous medium [1, p. 103].

4. Thermal conductivity in the layer along the liquid flow and thermal resistance at the wall [1, p. 127] are neglected.

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 40, No. 1, pp. 59-63, January, 1981. Original article submitted October 23, 1979.